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 Introduction 

1.1. Motivation 

Work package 2 (WP2) aims at performing a study of current technologies for applications 

related to heterogeneous camera networks where camera mobility plays a key role. Such studies 

will be performed on public datasets. If required, small scenarios will be recorded. The main 

objective is the identification of suitable state-of-the-art video analysis tools (e.g., segmentation, 

tracking and detection), by the implementation and evaluation of their performance in single 

mobile cameras for use as a baseline for comparison with the achievements to be developed 

within WP3 and WP4. 

This deliverable describes the work related with tasks T.2.1 People tracking for active 

vision, T.2.2 Object detection for collision detection, T.2.3 Scene categorization for lifelogging 

and T.2.4 Multi-target tracking for UAV monitoring. 

1.2. Document structure 

This document contains the following chapters: 

• Chapter 1: Introduction to this document 

• Chapter 2: People tracking for active vision 

• Chapter 3: Object detection for collision detection 

• Chapter 4: Scene categorization for lifelogging 

• Chapter 5: Multi-target tracking for UAV monitoring 

• Chapter 6: Conclusions 
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 People tracking for active vision 

2.1. People detection with omnidirectional cameras  

This work [1] adapts a people detection system for omnidirectional cameras [2] to deep 

learning descriptors. The original system is based on a grid of spatial-aware classifiers 

implemented by support vector machines (SVMs) distributed throughout the image, with an area 

of action called fovea. As a result, the classifier detection system is able to distinguish different 

types of appearances that occur in an omnidirectional image according to the spatial location of 

an object, in this a case, a person. This work used the Histogram of Oriented Gradients detector 

(HOG) [8] as the base of the image descriptor, providing satisfactory detection results at the 

expense of a costly training process for the SVMs 

This work substitutes HOG descriptors with descriptors extracted from pre-trained 

Convolutional Neural Networks (CNNs), leveraging the training process of the SVMs and 

achieving detection results that are comparable (and superior in several cases) to those of the 

original work. Different CNN architectures have been evaluated AlexNet [20], VGG19 [25], 

Densenet201 [22] and MobileNetV2 [3], as well as descriptors from several layers at different 

depth levels. The evaluated CNN architectures have been trained with the ImageNet database 

[4], that comprises millions of images and thousands of classes. An example of detection results 

can be seen in Figure 1. 

 

Figure 1. Example of detection results in an omnidirectional image. Purple dots represent the 

activated classifiers, blue dots represent the final person location. Yellow dots correspond to 

untrained classifiers. 
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The performance of the modified system has been evaluated in terms of Precision. Recall 

and F-Score metrics. Table 1 summarizes the results of several deep learning descriptors with 

respect to HOG. Densenet201 shows the best performance, improving the results of HOG for 

some of the cameras of the dataset.  

 

Table 1 Precision, Recall and F-Scores of the system using different descriptors; retrieved from 

different CNN architectures and layers. The performance of these descriptors is compared to 

HOG, the descriptor used in the original system 
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 Object detection for collision detection 

3.1. People detection evaluation with a wearable 
camera 

We present the results of 4 different people detector state of the art approaches over the 

detection part of the MOT2016/2017 dataset, i.e., MOT2017Det dataset [5]. Some examples 

from this dataset can be found in Figure 2. The selected approaches are the Aggregate Channel 

Features (ACF) [6], Deformable Parts Model (DPM) [7], Hierarchical detection of persons in 

groups (HDGP) [12] and Faster Regions with Convolutional Neural Network Features (FRCNN) 

[9]. Figure 3 shows the detection performance and Figure 4 shows the Precision-Recall Curves 

of each approach. 

The ACF detector is a fast and effective sliding window detector (30 fps on a single core). It 

is an evolution of the Viola & Jones (VJ) detector but with an ~1000 fold decrease in false 

positives (at the same detection rate). ACF is best suited for quasi-rigid object detection (e.g. 

faces, pedestrians, cars). 

The DPM detector is based on exhaustive search and a part-based model. It is a part-based 

adaptation of the original Histogram of Oriented Gradients detector (HOG) [8]. It proposes an 

object detection system based on mixtures of multiscale deformable part models where each 

deformable object part is 5nalyse5 as the original HOG detector [8]. 

The HDGP is a DPM variation in order to detect pedestrians in scenarios with the presence 

of groups of persons. The HDGP detector propose a hierarchy of persons in groups, where the 

detection of the most visible person could help to detect the occluded ones, and a hierarchy of 

body parts, which main principle is to use the body parts with most useful information. 

The FRCNN detector, which is a more efficient variation, mainly in terms of computational 

cost but also in performance, of the previous R-CNN [10] and FRCNN [11] detectors. The three 

variations have in common the combination of bottom-up region proposals with rich features 

computed by a convolutional neural network. The main difference of the FRCNN is the use of a 

Region Proposal Network (RPN) that enables nearly cost-free region proposals. 
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Figure 2. MOT16/17 visual examples. 

Detector Recall Precision FAR TP FP FN Av Precision 

ACF 36.1 66.1 2.31 23937 12302 42456 0.3250 

DPM 64.7 60.2 5.34 42979 28405 23414 0.6027 

HDGP 47.3 88.6 0.76 31422 4038 34971 0.4464 

FRCNN 87.9 93.8 0.72 58342 3844 8051 0.8180 

 

Figure 3. MOT2017Det train sequences pedestrian detection evaluation. 

 

 

  
ACF DPM 

  
  

HDGP FRCNN 

 

Figure 4. MOT2017Det train sequences pedestrian detection evaluation. Precision-

Recall Curves. 
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3.2. People re-identification evaluation 

We present the results of 11 different feature extraction schemes [42] that are commonly 

used in the re-id literature [13] over two traditional people re-identification datasets VIPeR [14] 

and Market150 [15]. The 11 different features are WHOS [16], GOG [17], AlexNet [20], 

ResNet18 [21], ResNet50 [21] , ResNet101 [21] , DenseNet201 [22] and InceptionResNetv2 

[23]. 

Figure 5 shows the state of the art re-identification performance over VIPeR dataset and 

Figure 6 over Market1501dataset. 

In WHOS [50], is a feature descriptor based on weighted histograms of overlapping stripes. 

It is a discriminative and efficient descriptor of person appearance for re-identification based on 

coarse, striped pooling of local features. It exploits a simple yet effective center support kernel 

to approximately segment foreground from background 

In GOG [48], an image is divided into horizontal strips and local patches in each strip are 

7nalyse7 using a Gaussian distribution. Each strip is then regarded as a set of such Gaussian 

distributions, which is then summarized using a single Gaussian distribution. 

In IDECaffeNet, IDE-ResNet, and IDE-VGGNet, we use the idea first presented in the 

DeepFace paper [18] and applied to reid by Zheng et al. [19], in which every person is treated as 

a separate class and a convolutional neural network is trained for a classification objective: 

AlexNet [20], ResNet18 [21] , ResNet50 [21] , ResNet101 [21] , DenseNet201 [22] and 

InceptionResNetv2 [23] are used respectively. 

Feature Rank1 Rank5 Rank10 Rank20 mAP-100 

WHOS 27.52 56.34 70.57 83.77 34.35 

GOG 32.66 65.25 77.97 88.48 40.03 

AlexNet 11.82 30.02 42.77 57.69 16.80 

ResNet18 6.09 18.86 29.19 44.45 10.10 

ResNet50 12.96 34.32 48.05 64.27 18.61 

ResNet101 15.06 36.60 49.64 65.27 20.70 

DenseNet201 12.61 32.25 44.98 61.01 17.98 

InceptionResNetv2 6.80 20.30 30.51 43.75 10.82 

 

Figure 5. Viper pedestrian re-identification evaluation. 
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WHOS Rank1 Rank5 Rank10 Rank20 mAP-100 

GOG 39.96 62.00 71.14 79.99 18.83 

AlexNet 42.84 64.10 73.19 80.40 21.65 

ResNet18 21.44 41.66 51.60 60.57 8.34 

ResNet50 11.07 26.51 35.30 46.35 4.04 

ResNet101 18.29 37.98 48.28 57.84 7.14 

DenseNet201 17.90 37.89 47.86 59.26 7.38 

InceptionResNetv2 17.55 37.53 47.80 58.40 7.13 

WHOS 8.14 20.07 27.49 36.16 2.72 

 

Figure 6. Market1501 pedestrian re-identification evaluation. 

 

3.3. Car re-identification evaluation 

Following the same evaluation than with person re-identification, we present the results of 

11 different feature extraction schemes that are commonly used in the re-id literature [13] over 

one car re-identification dataset CityFlow-ReID [24] The 11 different features are WHOS [16], 

GOG [17], AlexNet [20], ResNet18 [21], ResNet50 [21] , ResNet101 [21] , DenseNet201 [22] 

and InceptionResNetv2 [23]. Figure 7 shows the state of the art re-identification performance 

over CityFlow-ReID dataset 

 

WHOS Rank1 Rank5 Rank10 Rank20 mAP-100 

GOG 21.82 35.72 43.76 55.16 6.10 

AlexNet 17.70 32.57 41.37 49.95 5.78 

ResNet18 22.26 39.20 46.91 57.11 6.91 

ResNet50 17.48 35.07 42.89 53.75 5.54 

ResNet101 25.73 44.52 53.42 62.98 8.90 

DenseNet201 25.73 42.56 51.14 60.26 8.72 

InceptionResNetv2 28.99 46.58 54.07 63.41 10.03 

WHOS 21.93 35.94 44.63 55.16 6.10 

 

Figure 7. CityFlow-ReID car re-identification evaluation. 

 

3.4. People detection in presence of groups 

In this work [43] we address one of the most typical problems of people detection in 

presence of groups of people: in this kind of scenarios, traditional people detectors have 

difficulties dealing with several occlusions. In order to deal with this problem, we propose the 

use of two different hierarchies. The first one consists of a hierarchy of people, i.e., the use of 
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the detections of different people belonging to a group in order to refine the individual’s 

detections. The second one consists of a hierarchy of parts [45], i.e., the use of different 

combinations of body parts in order to refine the final detection (see Figure 8).   

In the last years, the use of the Artificial Intelligence, in concrete, Convolutional Neuronal 

Networks (CNNs) for the treatment of images, has managed to improve these algorithms, which 

usually used traditional techniques such as gradient descent. The results are very encouraging in 

all areas of detection such an objects, people, and another elements in images.  

This is why we also propose in this work to improve the original approach [45] with an 

algorithm based on Deformable Parts Models (DPMs) and CNNs [44], with the aim of adding 

those cases in which we find occlusion of people by others, using a model that not only focuses 

at the main person but also analyzes its closest environment in search of more persons that may 

be occluded and in which we only see, for example, the right half of the body. 

 

Figure 8. Different combinations of body parts in order to refine the final detection. 

 Scene categorization for lifelogging 

4.1. Comparative performance of scene recognition 
methods. 

The aim of this study is to assess the performance of scene recognition methods and to 

explore their capabilities and robustness to challenges. To this aim, we here report quantitative 

performances of five of the most used deep learning methods based on convolutional neural 

networks for the task of automatic scene recognition. The evaluated architectures are: AlexNet 
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[20], VGG16 [25], Densenet161 [22], ResNet18 and ResNet50 [21]. The dataset used for 

evaluation is the validation set of the Places365 [26] (see Figure 9).   

To further assess the performance of these methods, we explore their diversity by 

accounting for the scene classes to which any two networks return the same results, disregarding 

their correctness (see confusion matrix of Figure 10). We also measure their operation limits by 

inspecting the scene categories to which the architectures return less (see Figure 11) and more 

(see Figure 12) coincidences.  

Likewise, the robustness of the analysed solutions to image noise is also evaluated [27]. 

Finally, the responses of the networks to images that represent untrained scene categories are 

studied. (see example results in Figure 13 and Figure 14).  

Experimental results suggest that: 

1. Performance for scene recognition is below coeval tasks such as object detection. 

 

2. DenseNet161, the deeper network, is the top performing architecture. However, 

performance does not increase at the same rhythm as architectures’ complexity. 

 

3. There are scene classes that entail a higher complexity than others, mainly due to the 

presence of semantically similar classes in the dataset. 

4. Human-interpretable concepts seem to be learning, as the networks’ responses to 

previously unobserved classes somehow agrees with human interpretation. 

5. There is room for improvement of both the performance and the interpretability of 

deep learning solutions for scene recognition. 

 

 
Architecture #Layers #correct 

images 

Rank1 Rank5 Rank10 

AlexNet 8 15.622 45,33% 67,26% 85,31% 

VGG16 16 16.794 46,01% 68,47% 86,81% 

ResNet18 18 19.874 54,45% 76,97% 91,91% 

ResNet50 50 20.272 55,54% 78,22% 92,89% 

DenseNet161 161 20.477 53,80% 76,55% 92,04% 

Figure 9. Evaluation of deep learning architectures on Places365. Best result in bold. 
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Figure 10. Confusion matrix of deep learning architectures on Places365. 

 

 

 Alexnet VGG16 Resnet18 Resnet50 Densenet161 

Alexnet - 
science_museum 

(29) 

music_studio 

(19) 

music_studio 

(16) 

science_museum 

(15) 

VGG16 
science_museum 

(29) 
- 

pub/indoor 

(17) 

pub/indoor 

(16) 

pub/indoor 

(21) 

Resnet18 
music_studio 

(19) 

pub/indoor 

(17) 
- 

11nalyse 

(53) 

11nalyse_loft 

(51) 

Resnet50 
music_studio 

(16) 

pub/indoor 

(16) 

11nalyse 

(53) 
- 

valley 

(56) 

Densenet161 
science_museum 

(15) 

pub/indoor 

(21) 

11nalyse_loft 

(51) 

Valley 

(56) 
- 

Figure 11. Scene categories with a lower number of inter-network coincidences. 

Number of coincidences (out of 100) is indicated in brackets. 
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 Alexnet VGG16 Resnet18 Resnet50 Densenet161 

Alexnet - 
volleyball_court/ 

outdoor (89) 

car_interior, 

volleyball_court/ 

outdoor (86) 

car_interior 

(87) 

volleyball_court/ 

outdoor (87) 

VGG16 
volleyball_court/ 

outdoor (89) 
- 

volleyball_court/ 

outdoor (92) 

wind_farm 

(89) 

volleyball_court/ 

outdoor (91) 

Resnet18 

car_interior, 

volleyball_court/ 

outdoor (86) 

volleyball_court/ 

outdoor (92) 
- cockpit (98) 

bowling_alley 

(95) 

Resnet50 car_interior (87) wind_farm (89) cockpit (98) - 
arena/hockey 

(97) 

Densenet161 
volleyball_court/ 

outdoor (87) 

volleyball_court/ 

outdoor (91) 
bowling_alley (95) 

arena/hockey 

(97) 
- 

Figure 12. Scene categories with a higher number of inter-network coincidences. 

Number of coincidences (out of 100) is indicated in brackets. 

 

 

 

 
 

Figure 13. Networks predictions for untrained class cellar. 

 



    
 

D2.v1 Feasibility studies: algorithms and findings      13 

 

 
 

Figure 14. Networks predictions for untrained class photograph studio. 

 

4.2. Scene recognition for lifelogging. 

4.2.1. Performance of scene recognition methods for lifelogging videos 

The aim of this study is to assess the effectiveness of previously studied scene recognition 

methods for the analysis of lifelogging videos. To this aim, we have created a dataset that is 

made up of 450 videos (up to 263607 frames) and is arranged into 365 classes following the 

class definitions in Places365 dataset [26]. Details of the dataset can be found at [35]. 

The protocol for evaluation is as follows:  

1. First, we extract scene class likelihoods for each frame of each video by using 

scene-trained convolutional neural networks—AlexNet [20], ResNet18, ResNet50 

[21] and Densenet161 [22]—.  

2. Then, we extract global performance metrics to classify the whole video to a scene 

class. We explore the application of two simple global measures: the mean (µ) and 

the median (M) along the whole video of the scores obtained for each image. 

Performances are reported in Figure 15 that also includes—for comparison—individual 

performances (I), i.e. those resulting for accounting the number of correctly recognised frames 

out of the total number of frames per scene class.  
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Figure 15. Performance of scene recognition for lifelogging videos. Best result in bold. 

 

Experimental comparison is completed with a Graphical User Interface (GUI) that enables 

the observation of per frame results.  Figure 16 includes a snapshot of the GUI:  

Module 1 -includes a graphic visualization of the temporal distribution of the scores of the 

five best categories throughout the video. The module allows to select the global metric, the 

desired scene class to be explored and the convolutional neural network whose results are 

to be observed. 

Module 2 -includes example images of the five top categories obtained by the selected 

network, on the selected sequence according to the selected global metric. For each one of 

these images, the GUI includes a checkbox, that can be selected/deselected to include 

graphical results for the associated scene class in Module 1. For comparison, we also 

include in this module (bottom right corner) an example image of the ground-truth class.  

Module 3 -includes the video under analysis, it allows to play or stop the video at will and 

to move freely at frame level. 

In the example, the ball pit class (blue line) is dominant along the video, but the score for 

this class drops at some frames. This situation is recurrent along the dataset. Overall, 

experimental results suggest that scene recognition in lifelogging videos is challenging due to 

the temporal instability of scene predictions and to the heterogeneity of lifelogging videos (i.e., 

several scene classes may coexist inside a single video). 

The GUI is available at: http://www-vpu.eps.uam.es/webvpu/en/recursos-publicos/software/. 

 

Architecture 

RANK 1 (%) RANK 5 (%) RANK 10 (%) 

I µ M I µ M I µ M 

AlexNet 20.365 28.914 24.578 43.102 51.561 49.408 53.477 62.926 61.019 

ResNet18 27.445 35.372 31.262 52.526 60.407 56.775 61.417 69.425 67.936 

ResNet50 29.127 36.127 34.485 55.120 64.159 60.765 63.731 70.039 69.393 

DenseNet161 29.783 36.605 34.560 55.430 63.645 60.543 63.882 70.095 67.974 

http://www-vpu.eps.uam.es/webvpu/en/recursos-publicos/software/
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Figure 16. Graphical User Interface for assessing scene recognition for lifelogging 

scenarios. See text for modules’ description. 

 

4.2.2. Interpretability of deep learning networks 

The aim of this study is to gather information on the internal processes carried out for 

recognition inside a scene recognition method based on convolutional neural network. To this 

aim, and due to the complexity of creating a visualization tool from scratch, we focus on the 

adaptation of an existing visualization tool. Specifically, we target to enhance the scalability and 

modularity of an existing tool, maximizing the diversity of the networks that can be observed.  

  In the design of a training strategy, one of the main challenges is the difficulty in 

understanding what is happening inside the convolutional neural network. This difficulty can 

lead to the interpretation of the network as a black box; hence, hindering the ability to optimize 

it for a given task.  The use of a visualization tool promises to enable the design of dynamic 

training strategies suited for scene recognition on large heterogeneous lifelogging datasets, by 

allowing an orderly access to information for all the layers of a given network.  
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Figure 17. Functionalities of the DeepVis Toolbox interface. 

 

Figure 18. Entropy of neurons’ activations for AlexNet trained for scene recognition. 

We adapted The DeepVis Toolbox [28][29]—with functionalities depicted in Figure 17. 

DeepVis provides information on the activation patterns, the maximal activation image, the 

receptive field and the canonical filter nature for every neuron in the convolutional neural 

network. The main problem of DeepVis is its scalability. DeepVis has been developed in Caffe 

[30] and provides functionalities just for Caffe-like architectures. Whereas Caffe was a widely 

used platform for deep learning, currently, the focus is on alternative development environments 

such as Pytorch [31]. In this vein, we propose to establish an adaptation protocol such that the 

visualization of non-Caffe convolutional neural networks can be also carried out via DeepVis. 
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To this aim, for a given convolutional neural network in Pytorch, we start by using a method to 

transform for Python to Caffe [32].  

We are currently working in quantifying these observations and in designing strategies to 

maximize the learning capabilities of a given architecture. An example of the potential 

advantages enabled by the visualization tool is included in Figure 18. The Figure represents the 

entropy of AlexNet neurons’ activations for all the images of a scene recognition dataset. Low 

entropy is an indicator of homogeneous stable activations—or continuous inhibition—, high 

entropy is an indicator of heterogeneous diverse activation. We hypothesize that the 

representation capacity of low entropy neurons is underused and propose to design a scheme to 

convey dynamic learning rates for underused neurons. In the example depicted in in Figure 18, 

the intermediate layer conv3 appears to be less used than generic (shallower) and specialized 

(deeper) layers. 

The visualization tool together with the adaptation protocol is available at: http://www-

vpu.eps.uam.es/webvpu/en/recursos-publicos/software/. 

4.3. Semantic segmentation for lifelogging. 

Recent studies on the semantic interpretability of convolutional neural networks, suggest 

that the learning of scenes is inherent to the learning of the objects they include [33][34]. Object 

detectors somehow act as latent-variables in hidden-units within networks trained to recognize 

scenes. These detectors are learnt without constraining the networks to decompose the scene 

recognition problem [33]. Under this premise, this line of research is focused on evaluating the 

benefits of explicitly including object information in the scene recognition process. To this aim, 

we start by studying the performance of semantic segmentation methods on lifelogging 

scenarios. Alternatively, the performance of object detectors in these scenarios is evaluated in 

section 4.4. 

The performance of semantic segmentation methods has boosted since the advent of deep 

learning solutions. The highly complex task of labelling a pixel as an instance of a given class 

has been substantially simplified using encoder-decoder convolutional neural networks. 

However, performance is still constrained to specific scenarios and sets of classes, which is one 

of the pending challenges of this technique.  

We aim to evaluate the performance of existing semantic segmentation methods on 

lifelogging videos. However, to our knowledge there are not public-available lifelogging 

datasets annotated for semantic segmentation. To cope with this issue, we designed a GUI to (at 

http://www-vpu.eps.uam.es/webvpu/en/recursos-publicos/software/
http://www-vpu.eps.uam.es/webvpu/en/recursos-publicos/software/
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less qualitatively) can be used assess the performance at pixel level for the videos in the 

lifelogging dataset described in [35]. 

 

Figure 19. Graphical User Interface for assessing semantic segmentation recognition 

for lifelogging scenarios. See text for modules’ description. 

The GUI is depicted in Figure 19: 

Module 1 -includes the video under analysis and enables the selection of any pixel in the 

current frame whose information is depicted at Module 2. 

Module 2 -includes the information of the selected pixel, including top semantic class and 

associated likelihood.  

Module 3 -includes the semantic information of the video under analysis, it allows to play 

or stop the video at will and to move freely at frame level. 

Module 4 -includes an example image from the (Places365 dataset) of the scene class 

associated to the video under analysis. 
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The GUI is available at: http://www-vpu.eps.uam.es/webvpu/en/recursos-publicos/software/ 

and allows to qualitative asses that the semantic segmentation is temporally unstable at pixel 

level. However, top semantic classes remain somehow stable for scene classes. 

4.4. Object detection for lifelogging. 

The work in [36] performs an initial evaluation of state-of-the-art object detectors in 

Google Street View images obtained with the tool described in Section 3.2 deliverable D1.3 [35] 

of the MobiNet video project. YOLOv3 [37], trained with the COCO database [38], has been 

used to perform detection of objects that are common in urban scenes. Some examples of 

detection results for different objects in different locations are shown in Figure 20. 

 

 

 

Figure 20 Examples of object detection in Google Street View images. Colors of bounding boxes 

represent different object classes; red: person, dark blue: car, light blue: bicycle. 

The evaluation of the performance of object detection in Google Street View images has 

been primarily oriented to investigate the effect of geometric distortion in the appearance of 

objects caused by images with a large field of view (this effect can be observed in the car at the 

bottom of the third image in Figure 20). An example of the results can be found in Figure 21. 

The results obtained in this work are preliminary and obtained using a limited dataset, but 

suggest that the geometric distortion that is present in these images (caused by certain 

parameters in the image retrieval) affects the performance of state-of-the-art object detectors on 

these types of images. This effect should be investigated further during the lifetime of the 

project. 

http://www-vpu.eps.uam.es/webvpu/en/recursos-publicos/software/
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Figure 21 Precision-Recall curves for object detection in Google Street View images: classes person and 

car. Curves for configurations with different geometric distortion levels. Pitch= 0 and pitch=-40 

corresponds to the configurations with lower and higher geometric distortions respectively. 
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 Multi-target tracking for UAV monitoring 

5.1. Visdrone challenge 2018 

In 2018 a new challenge, the VisDrone-VDT2018 (“Vision Meets Drone Video Object 

Detection and Tracking”) challenge appeared in which all the sequences consist in drone or 

UAVs videos with multiple objects.  VisDrone-VDT2018 [39] is a large-scale video object 

detection and tracking dataset, including 79 video clips with approximate 1.5 million annotated 

bounding boxes in 33,366 frames. Some other useful annotations, such as object category, 

occlusion, and truncation ratios, are also provided for better data usage. The dataset is collected 

with several drones, in various scenarios, which are taken at different locations, but share similar 

environments and attributes. Figure 22 and Table 2 summarize the dataset. 

 

 
Figure 22. An overview of the VisDrone dataset. 

 

 

Number of snippets 

Dataset Training Validation Test-challenge 

Multiple object tracking   

 
56 clips    

24,201 frames             
7 clips 

2,819 frames 

 
16 clips 

6,333 frames 

Table 2. VisDrone MOT challenge dataset 2019 
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The results obtained in the competition are as indicated in the following Table 3. 

 

 

Table 3 Multi-object tracking results with prior object detection in each frame on the VisDrone-

VDT2018 testing set. The submitted algorithms are ranked based on the average rank of the ten 

metrics. (* indicates that the tracking algorithm is submitted by the committee) 

 

We can observe that the winner was V-IOU. According to [39], the algorithm V-IOU is 

based on the IOU tracker 33[40][41] which associates detections to tracks solely by their spatial 

overlap (Intersection-over-Union) in consecutive frames. We 22nalyse the tracker in the next 

subsection. 

5.2. Analysis of IOU and V-IOU trackers 

5.2.1. Tracker IOU: description 

The main objective of the IOU  33[40]  tracker is the fast multiple object tracking based on 

the improved object detectors. This is possible due to recent advances in the detection domain 

including CNN-based and traditional approaches. 

The main idea is that improvements in the object detection tasks allow to simplify the 

tracking task. By utilizing the tracking-by-detection approach, the tracker itself can be thought 

of as a simple filtering procedure on the detection level. The proposed in the paper tracker uses 

the state-of-the-art object detector, the output of which is filtered according to the following 

rules. The algorithm of the IOU (Intersection Over Union) tracker is based on two assumptions: 

• The detector produces a detection per frame for every object to be tracked, i.e. there 

are none or only a few ”gaps” in the detections (otherwise fragmentation and ID-

switches rates will grow) 
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• The detections of an object in consecutive frames have an unmistakably high 

overlap (IOU) (therefore the video sequence must have high fps or contain only 

slowly moving objects) 

The algorithm itself can be summarised as follows: a track continues by associating the 

detection with the highest IOU (see eq. 1) to the last detection in the previous frame if a certain 

threshold σIOU is met. All detections not assigned to an existing track will start a new one. All 

tracks without an assigned detection will end. 

 

𝐼𝑂𝑈(𝑎, 𝑏)  =  
𝐴𝑟𝑒𝑎(𝑎) ∩ 𝐴𝑟𝑒𝑎(𝑏)

𝐴𝑟𝑒𝑎(𝑎) ∪ 𝐴𝑟𝑒𝑎(𝑏)
      (1) 

 
The performance is further improved by filtering out all tracks with a length 

shorter than tmin and the ones without at least one detection with a score above σh. 

 

5.2.2. Tracker IOU: Conclusions and experiments 

• The presented IOU tracker outperforms the state-of-the-art at only a fraction of the 

complexity and computational cost without any analysis of the visual information on the 

DETRAC dataset, however it shows worse performance on the MOT16/MOT17 dataset 

• The proposed tracker does not handle missing detections in any way, therefore false 

negatives of the detector lead to high fragmentation and ID-switches 

• The input video must have high fps or capture objects that move very slowly 

• The tracker demonstrates performance shown in the Table 4, on the MOT17 Dataset on 

the machine with following specifications 

o CPU:  Intel  Core  i7-7700  HQ  @  2.80  GHz,  4  physical 
cores, 8 logical cores 

o GPU: NVIDIA GeForce GTX 1050, 4GB, GDDR5 
o RAM: SODIMM Samsung [M471A1K43CB1-CRC], 16 

GB, DDR4, 2400 MHz 
o OS: Windows 10 Home edition, 64-bit 
o Python version: 3.7.1 

 

 

 

https://motchallenge.net/data/MOT17/
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Detector 

FRCNN SDP 

MOT17 Train Sequences 

Average: 5222 fps 

Min: 891 fps 

Max: 9887 fps 

Average: 4939 fps 

Min: 497 fps 

Max: 10739 fps 

MOT17 Test Sequences 

Average: 4571 fps 

Min: 346 fps 

Max: 12273 fps 

Average: 3188 fps 

Min: 223 fps 

Max: 8036 fps 

Table 4. Performance of the IOU-tracker 

 

• On the same machine and CARPK dataset the tracker reaches 108-110 fps. For this 

experiment there were no FRCNN/SDP or other detections available on the Internet, so 

instead of them, the ground truth was used. As can be seen from the Figure 23, the 

tracker does not yield good results on this dataset even with the perfect detections, 

because FPS of the video is very low 

 

 
Figure 23 IOU-tracker on the CARPK dataset with ground-truth as the detections. 

Because of low FPS of video footage, fragmentation and the number ID-switches are 

very high, therefore this tracker is not applicable to such datasets. 

 

 

https://lafi.github.io/LPN/
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5.2.3. Tracker V-IOU: description 

The method is further improved by visual tracking to continue a track if no detection is 

available by the method V-IOU [41]. If a valid detection can be associated again, visual tracking 

is stopped and the tracker returns to the original IOU tracker functionality. Otherwise, the visual 

tracking is aborted after ttl frames. For each new track, visual tracking is performed backwards 

for a maximum of ttl previous frames or until the track can be merged with a finished one if the 

IOU criteria of [40] is satisfied. This extension is made to efficiently reduce the high amount of 

fragmentation of the tracks produced by the original IOU tracker. V-IOU can be used in 

association with a wide range of visual single-object trackers. Please refer to [41] for further 

details. 

Using visual information  

The modification to the IOU-tracker is designed to reduce the high amount of ID switches 

and the high rate of fragmentation of the resulting tracks of the baseline method. This is 

achieved by incorporating a visual single-object tracker into the tracking framework to 

compensate for missing object detections. When no detection is available for track association, 

the IOU-tracker falls back to visual single-object tracking performed in two directions to help to 

merge discontinued tracks. Two directional tracking is justified by the assumption that it lowers 

the risk of visual tracker losing the target. 

The conclusions for this extension are as follows: 

• The presented V-IOU-tracker reduces the number of ID switches and 

fragmentations compared to the original IOU-tracker 

• Although, the speed of such modification is significantly lower than that of the 

original tracker, it is still very high even for high-definition video footage 

• The proposed tracker outperforms the state-of-the-art on the DETRAC and 

VisDrone datasets 

• There is no code available for this tracker 

Using Kalman Filter 

The idea is to use Kalman Filter to skip frames in order to increase speed and deal with 

false negatives of the detector. In the real-world applications, few missing detections cause a 
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high number of ID switches and fragmentations which degrades the quality of the tracks 

significantly. 

 The Kalman filter’s capability of making predictions allows to skip frames while still 

keeping track of the object. Skipping frames in a tracking-by-detection task means the detector 

will process significantly less frames. The Kalman-IOU Tracker, when used with the EB 

detector and configured to skip 2/3 of the frames, can  outperform the original IOU Tracker on 

the DETRAC-Train dataset. 

The conclusions for this extension are as follows: 

• The presented KIOU-tracker reduces the number of ID switches and 

fragmentations compared to the original IOU-tracker 

• To evaluate the performance of the Kalman IOU tracker and compare it with 

others, the authors present the results tables which presumably reflect the 

superiority of the K-IOU tracker. Based on the tables, the tracker performs better 

on both DETRAC Train and Test datasets. However, in reality, references to the 

original IOU paper show that the authors of K-IOU tracker did not include the best 

versions of IOU-tracker that achieve the best performance in their comparison 

report. Neither did they include any comparison with the V-IOU tracker, nor the 

speed of the K-IOU tracker. 

• A complete comparison is presented in the Table 5. Comparison of IOU-based 

trackers performance on the DETRAC Test dataset. 

 

 

 

 

 

 

 

 

http://zyb.im/research/EB/
https://github.com/bochinski/iou-tracker
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Tracker Detector 
PR- 

MOTA 

PR-

MOTP 

PR-

IDs 

PR-

FM 
Speed 

IOU R-CNN 16.0% 38.3% 5029.4 5795.7 100,840 fps 

IOU EB 19.4% 28.9% 2311.3 2445.9 6,902 fps 

KIOU EB 21.1% 28.6% 462.2 712.1 - 

IOU 
Mask 

R-CNN 
30.7% 37.0% 668.0 733.6 14,956 fps 

V-IOU 
Mask 

R-CNN 
30.7% 37.0% 162.6 286.2 359.18 fps 

Table 5. Comparison of IOU-based trackers performance on the DETRAC Test dataset. 

• The tracker demonstrates performance shown in the Table 3, on the MOT17 

Dataset on the machine with following specifications 

o CPU:  Intel  Core  i7-7700  HQ  @  2.80  GHz,  4  physical 
cores, 8 logical cores 

o GPU: NVIDIA GeForce GTX 1050, 4GB, GDDR5 
o RAM: SODIMM Samsung [M471A1K43CB1-CRC], 16 

GB, DDR4, 2400 MHz 
o OS: Windows 10 Home edition, 64-bit 
o Python version: 3.7.1 

As can be seen from the Table 6.  Performance of the K-IOU-tracker, on average the K-

IOU-tracker shows real-time performance, but sometimes it drops below 10 fps. 

 

 
Detector 

FRCNN SDP 

MOT17 Train Sequences 

Average: 50 fps 

Min: 20 fps 

Max: 294 fps 

Average: 76 fps 

Min: 13 fps 

Max: 152 fps 

MOT17 Test Sequences 

Average: 126 fps 

Min: 9 fps 

Max: 291 fps 

Average: 57 fps 

Min: 6 fps 

Max: 126 fps 

Table 6.  Performance of the K-IOU-tracker 

https://motchallenge.net/data/MOT17/
https://motchallenge.net/data/MOT17/
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• On the same machine and CARPK dataset the tracker reaches 8 fps skipping ⅔ of 

the frames, as opposed to the original tracker that reaches 110 fps. For this 

experiment there were no FRCNN/SDP or other detections available on the 

Internet, so instead of them, the ground truth was used. 

• There is no paper for this tracker 

The code is available on GitHub 

 

 

https://lafi.github.io/LPN/
https://github.com/siyuanc2/kiout
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 Conclusions 

This deliverable has described the state of the art in the areas of 

• People tracking for active vision 

• Object detection for collision detection 

• Scene categorization for lifelogging 

• Multi-target tracking for UAV monitoring. 

As well implementing and evaluating, on public datasets, different algorithms, that will be 

used for comparisons with the algorithms to be developed within PW3 and WP4. 
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